- داده کاوی
- زمان 4 دقیقه
هدف از خوشه بندی چیست؟
همانطور که میدانید از داده کاوی برای کاوش در اطلاعات و کشف دانش استفاده میشود. برای اینکار الگوریتمهای متعددی وجود دارد که هر یک برای هدف خاصی کاربرد دارند.
کلاسترینگ(Clustering) یا خوشه بندی از جمله الگوریتمهای قطعه بندی به حساب میآید. الگوریتم خوشهبندی اطلاعاتی را که ویژگیهای نزدیک به هم و مشابه دارند را در دستههای جداگانه که به آن خوشه گفته میشود قرار میدهد. به بیان دیگر خوشهبندی همان دستهبندیهای سادهای است که در کارهای روزانه انجام میدهیم. وقتی با یک مجموعه کوچک از صفات روبرو باشیم دسته بندی به سادگی قابل اجرا است، برای مثال در یک مجموعه از خودکارهای آبی، مشکی، قرمز و سبز به راحتی میتوانیم آنها را در ۴ دسته قرار دهیم اما اگر در همین مجموعه ویژگیهای دیگری مثل سایز، شرکت سازنده، وزن، قیمت و… مطرح باشد کار کمی پیچیده میشود. حال فرض کنید در یک مجموعه متشکل از هزاران رکورد و صدها ویژگی قصد دسته بندی دارید، چگونه باید این کار را انجام دهید؟!
بخش بندی دادهها به گروهها یا خوشههای معنادار به طوری که محتویات هر خوشه ویژگیهای مشابه و در عین حال نسبت به اشیاء دیگر در سایر خوشهها غیر مشابه باشند را خوشهبندی میگویند. از این الگوریتم در مجموعه دادههای بزرگ و در مواردی که تعداد ویژگیهای داده زیاد باشد استفاده میشود.
هدف خوشه بندی (Clustering) یافتن خوشه های مشابه از اشیاء در بین نمونه های ورودی می باشد اما چگونه می توان گفت که یک خوشه بندی مناسب است و دیگری مناسب نیست؟ در حقیقت سوال اصلی این است که کدام روش خوشه بندی برای هر مجموعه داده ای مناسب خواهد بود؟ می توان نشان داد که هیچ معیار مطلقی برای بهترین خوشه بندی وجود ندارد بلکه این بستگی به مساله و نظر کاربر دارد که باید تصمیم بگیرد که آیا نمونه ها بدرستی خوشه بندی شده اند یا خیر؟ با این حال معیار های مختلفی برای خوب بودن یک خوشه بندی ارائه شده است که می تواند کاربر را برای رسیدن به یک خوشه بندی مناسب راهنمایی کند که در بخشهای بعدی چند نمونه از این معیارها آورده شده است. یکی از مسایل مهم در خوشه بندی انتخاب تعداد خوشه ها می باشد. در بعضی از الگوریتم ها تعداد خوشه ها از قبل مشخص شده است و در بعضی دیگر خود الگوریتم تصمیم می گیرد که داده ها به چند خوشه تقسیم شوند.
خوشه بندی داده ها
خوشه بندی یا Clustering یکی از شاخه های یادگیری بدون نظارت (Unsupervised) می باشد و فرآیند خود کاری است که در طی آن، نمونه ها به دسته هایی که اعضای آن مشابه یکدیگر می باشند تقسیم می شوند که به این دسته ها خوشه (Cluster) گفته می شود. بنابراین خوشه مجموعه ای از اشیاء می باشد که در آن اشیاء با یکدیگر مشابه بوده و با اشیاء موجود در خوشه های دیگر غیر مشابه می باشند. برای مشابه بودن می توان معیارهای مختلفی را در نظر گرفت مثلا می توان معیار فاصله را برای خوشه بندی مورد استفاده قرار داد و اشیائی را که به یکدیگر نزدیکتر هستند را بعنوان یک خوشه در نظر گرفت که به این نوع خوشه بندی، خوشه بندی مبتنی بر فاصله نیز گفته می شود. بعنوان مثال در شکل ۱ نمونه های ورودی در سمت چپ به چهار خوشه مشابه شکل سمت راست تقسیم می شوند. در این مثال هر یک از نمونه های ورودی به یکی از خوشه ها تعلق دارد و نمونه ای وجود ندارد که متعلق به بیش از یک خوشه باشد.
بعنوان یک مثال دیگر شکل ۲ را در نظر بگیرید در این شکل هر یک از دایره های کوچک یک وسیله نقلیه (شیء) را نشان می دهد که با ویژگی های وزن و حداکثر سرعت مشخص شده اند. هر یک از بیضی ها یک خوشه می باشد و عبارت کنار هر بیضی برچسب آن خوشه را نشان می دهد. کل دستگاه مختصات که نمونه ها در آن نشان داده شده اند را فضای ویژگی می گویند.
همانطور که در شکل می بینید وسایل نقلیه به سه خوشه تقسیم شده اند. برای هر یک از این خوشه ها می توان یک نماینده در نظر گرفت مثلا می توان میانگین وسایل نقلیه باری را محاسبه کرد و بعنوان نماینده خوشه وسایل نقلیه باری معرفی نمود. در واقع الگوریتمهای خوشه بندی اغلب بدین گونه اند که یک سری نماینده اولیه برای نمونه های ورودی در نظر گرفته می شود و سپس از روی میزان تشابه نمونه ها با این نماینده های مشخص می شود که نمونه به کدام خوشه تعلق دارد و بعد از این مرحله نماینده های جدید برای هر خوشه محاسبه می شود و دوباره نمونه ها با این نماینده ها مقایسه می شوند تا مشخص شود که به کدام خوشه تعلق دارند و این کار آنقدر تکرار می شود تا زمانیکه نماینده های خوشه ها تغییری نکنند.
خوشه بندی با طبقه بندی (Classification) متفاوت است. در طبقه بندی نمونه های ورودی برچسب گذاری شده اند ولی در خوشه بندی نمونه های ورودی دارای بر چسب اولیه نمی باشند و در واقع با استفاده از روشهای خوشه بندی است که داده های مشابه مشخص و بطور ضمنی برچسب گذاری می شوند. در واقع می توان قبل از عملیات طبقه بندی داده ها یک خوشه بندی روی نمونه ها انجام داد و سپس مراکز خوشه های حاصل را محاسبه کرد و یک بر چسب به مراکز خوشه ها نسبت داد و سپس عملیات طبقه بندی را برای نمونه های ورودی جدید انجام داد.
دیدگاه خود را بیان کنید